Energy and Buildings 92, pp. 267-281, Ed. Elsevier. 2015.
Autores: Filippín C., Flores Larsen S., Marek L.
Highlights
- The technology and solar building design were appropriate for a semi-arid region of Argentina.
- The heating annual energy consumption was 73.5 kW h/m2.
- Cooling energy consumption corresponds to about 80% of the total daily consumption.
- The values of PMV and PPD during the summer satisfy ISO 7730.
- During winter, spring and autumn the PMV value approaches the neutral and slightly cool.
Abstract
Previous experience in designing and monitoring bioclimatic buildings in central Argentina suggests that their thermal behavior is a matter of concern and that further research is needed. Thus, the objectives of this work are: to describe the design and the post-occupancy evaluation of a new non-domestic solar building in a continental semiarid region of central Argentina (37°38′ latitude S, 63°34′ longitude, 175 m above sea level), to analyze the building’s hygrothermal and energy performance, and to estimate the PMV and PPD. The design guidelines were: to minimize the consumption of conventional energy in thermal-lighting conditioning, to use traditional technology, to maximize the thermal comfort, and to reach an extra-cost lower than 10%. The post-occupancy monitoring of the building was performed along one complete year (August 9th 2011–August 18th 2012). Data-loggers were installed in each functional area to sense the indoor temperature and relative humidity at time steps of 10 min. A meteorological station was installed near the building. The experimental results showed that during winter the average temperature in the areas of permanent use was 20.3 °C (average outdoor temperature: 10.1 °C) and the heating energy consumption was around 73.5 kW h/m2. During summer the average indoor temperature in the building was 26.9 °C, 1.7 °C below the outdoor temperature average (28.6 °C); cooling systems were turned on when the indoor temperature reached 28 °C, at approximately 11:30 AM, when the outdoor air temperature exceeded 30 °C. Mechanical cooling consumed around 59% of the daily electricity consumption. The PDD results obtained for winter and summer representative days meet the requirements of ISO Norm 7730. Heating and cooling energy saving was around 63% and 76.5% respectively. The monitoring showed that the thermal behavior and energy performance met the expectations of both designers and users, and it is considered satisfactory and promising for low-energy consumption buildings.
Keywords
- Solar non-domestic building;
- Passive solar strategies;
- Energy efficient envelope;
- Monitoring;
- Energy saving;
- Predicted Mean Vote;
- Predicted Percentage of Dissatisfied